Microbial properties of soil as influenced by sludge and fly ash manuring under rice-wheat cropping system

R.K. Kanojia¹ and S.B. Lal²

Received April 11, 2018 and Accepted June 25, 2018

ABSTRACT : An experiment on microbial properties of soil was carried out to study the effect of sludge and fly ash manuring under rice-wheat cropping system during the Kharif and Rabi season. The experiment included T₀ -Control, T₁ -100% recommended fertilizer dose (RDF) through sludge, T₂ -75% RDF through sludge + 25% RDF through chemical fertilizer, T₃ -50% RDF through sludge + 50% RDF through chemical fertilizer, T₄ -25% RDF through sludge + 25% RDF through chemical fertilizer, T₅ -100% RDF through chemical fertilizer , T₆ -50% RDF through sludge + 50% RDF through chemical fertilizer + fly ash @ 10 ton/ha, T₇ -100% RDF through sludge + fly ash @ 10 ton/ha, T₈ -100% RDF through chemical fertilizer + fly ash @ 10 ton/ha and T₉ -fly ash @ 10 ton/ha. The experiment was laid out in Randomized Block Design with three replications. Necessary field operations were made during experimentation. The result indicated that the maximum total bacterial counts per gm dry soil 24.35×10⁵ was recorded in T₆ (50% RDF through sludge) and it was minimum 14.78×10⁵ in T₅ (100% RDF through chemical fertilizer). Average number of azotobactor was also recorded maximum 8.4×10⁶ in T₆ and minimum 4.4×10⁶ in T₅ treatments. Maximum number of rhizobium count 9.6×10⁵ was recorded in T₃ and was recorded minimum 5.2×10⁶ in T₅. With regards to average number of fungi count, the maximum number of fungi 7.53×10³ was recorded in T₅ treatment and was recorded minimum 2.3×10³ in treatment T₁.

Key Words : Fly ash, sludge, microbial property, rice-wheat cropping system, sustainable agricultural production, rhizobium.